
1 
 

Expanding Reinforcement Learning Modeling Capabilities in Emergency 

Supply Distribution via Action Masking 

Rudy Milani1, Joshua Arnold1, Maximilian Moll1, Stefan Pickl1 

1 Department of Computer Science, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 

Neubiberg, Germany 

Email: rudy.milani@unibw.de 

 

 
Abstract: Mitigating post-disaster human suffering through the provision of emergency 
resources is a challenging problem from a logistical standpoint. Finding optimal 
distribution strategies can be a challenging task. In this paper, we apply action-masked 
Reinforcement Learning to a novel formulation of the problem of emergency resource 
distribution within the context of disaster relief logistics. Specifically, we propose a 
solution approach for the scenario of supplying several locations of resource 
consumption via a single logistics hub. Our main contributions are twofold. Firstly, we 
extend prior work by defining a more complex mathematical optimization problem 
including multiple constraints through which we induce spillover effects over multiple 
time steps in the system dynamics. Secondly, we employ action masking in our 
reinforcement learning approach to help the agent avoid taking newly generated invalid 
actions. Furthermore, we compare one-step and two-step greedy heuristics with the 
action-masked version of Q-learning in a variety of simulated scenarios. Results confirm 
the usability of action-masked Reinforcement Learning even though the one-step greedy 
approach achieves the best performance-time ratio. 
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1. Introduction 

Alleviating the negative impact of natural or man-made disasters on the affected communities requires 

significant logistical effort in their immediate aftermath (Cozzolino, 2012). Allocating basic necessities such as 

water, food and medicine within a reasonable amount of time, given constrained supplies and means of transport 

can be a challenging task. The research community has coined the term humanitarian logistics (Cozzolino, 2012; 

Klumpp et al., 2015) to describe this logistical effort to mitigate post-disaster human suffering.  

Prior work has discussed and solved a wide range of different formulations of the emergency resource 

allocation problem. For instance, (Jain and Bharti, 2023) aim to find optimal assignments of response units to 

emergency locations. (Wang et al., 2022) on the other hand, propose a more all-encompassing approach, i.e., they 

start from the path planning phase between the logistics hub and the final destinations. Other works such as (Fan 

et al., 2022) assume that the paths and associated transportation costs are given. Their problem definition will be 

extended in our work. 

Recent years have seen a surge of interest in all areas of machine learning, including Reinforcement Learning 

(RL) (Schrittwieser, J. et al., 2020). RL’s increasing popularity can be attributed to its effectiveness at solving 

sequential decision problems, which sit at the core of a variety of problems in logistics and operations research in 

general (Powell, 2022). In the following section, we will first briefly introduce RL and then discuss how (Fan et 

al., 2022) define their interpretation of the humanitarian logistics problem. Then, we will present our extensions 

to their optimization task, highlighting particular tricks and challenges in applying RL to such problems. Finally, 

we will present our solution approach to the aforementioned extended problem. 
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2. Background 

2.1. Reinforcement Learning 

Essentially, we are aiming to solve a sequential decision problem which can be modeled as a Markov Decision 

Process (MDP) (Sutton and Barto, 2018). MDPs are discrete time stochastic control processes. We can formalize 

an MDP as a 5-tuple (𝒮,𝒜, 𝒯, ℛ, γ), where 𝒮 ⊆ ℝ𝑛 is the state space, 𝒯: 𝒮 ×𝒜 → 𝒮 × ℛ is the transition function 

and γ ∈ [0,1) is a discount factor. After choosing an action at ∈ 𝒜, where 𝑡 ∈ ℕ0 denotes the time step, the agent 

enters a new state st+1 and receives a reward 𝑟𝑡+1 according to st+1, rt+1 = 𝒯(st, at). The agent's goal is to choose 

a sequence of actions that maximizes the expected return 𝔼[𝐺𝑡], where 𝐺𝑡 ≔ ∑ γ𝑘∞
𝑘=0 𝑟𝑡+𝑘+1 (Sutton and Barto, 

2018). We can easily see how the discounting factor γ can be set to place less focus on later rewards. Typically, 

the agent tries to learn a policy function π: 𝒮 → 𝒜 which suggests the optimal action in each state. A fundamental 

quantity in RL is the action value function 𝑄π(𝑠, 𝑎) = 𝔼π[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎], which measures the expected future 

return, if, in state 𝑠, action 𝑎 is chosen and policy π followed thereafter (Sutton and Barto, 2018). Q-learning 

(Watkin and Dayan, 1992), one of the most-used RL algorithms, attempts to learn the optimal action-value 

function through a combination of explorative experience and bootstrapping. The policy is derived by choosing 

the action that maximizes the obtained function. This fundamental setting, however, can only be applied to small 

and finite state and action spaces. Thus, DQN (Mnih et al., 2015) approximates the action-value function by a 

neural network and adds some more details to stabilize training.  

2.2 Related Work 

Finding optimal strategies for the humanitarian supply distribution problems are well-known studied 

challenges. However, the opportunity to consider machine learning-based approaches has not been extensively 

explored, in particular, in the case of Reinforcement Learning. On this thread, Fan et al. (2022) propose an RL-

based approach to solve the problem of allocating a limited number of resources from a single logistics hub to a 

set of N distinct locations where these resources are consumed. The authors focus on the 72-hour time window 

after the disaster, as they propose that it is the most critical phase for emergency response (Fan et al., 2022). This 

time frame is partitioned into T sub-periods of equal length, i.e. 𝑡 ∈ {1, … , 𝑇 }. During each of these time steps, 

Fan et al. (2022) aim to allocate resources up to some available amount C which represents the resource capacity 

of the logistics hub. Sending, at time step 𝑡, some resources 𝑎𝑡
𝑖 ∈ ℕ from the hub to location 𝑖 is associated with 

some cost 𝑐𝑖. Fan et al. (2022) trace the evolving state of the system by assigning each location 𝑖 with a state 

variable 𝑆𝑡
𝑖 ∈ ℤ , which denotes the amount of demand at location 𝑖 at time 𝑡. Each state can decrease via the 

allocation of new resources and increase via the inherent resource demand 𝐷 of the location 𝑆𝑡
𝑖 = 𝑆𝑡−1

𝑖 − 𝑎𝑡
𝑖 + 𝐷. 

Fan et al. (2022) consider three distinct types of costs, namely accessibility, deprivation and unfairness. Fan et al. 

(2022) summarize their optimization objective as 

 

𝑚𝑖𝑛  𝜉1∑∑𝑐𝑖

𝑇

𝑡=1

𝑁

𝑖=1

𝑎𝑡
𝑖

⏟        
accessibility cost

+ 𝜉2∑∑Γ(𝑆𝑡
𝑖)

𝑇

𝑡=1

𝑁

𝑖=1⏟          
deprivation cost

+ 𝜉3∑Γ(𝑆𝑇+1
𝑖 ) ,

𝑁

𝑖=1⏟          
unfairness cost

 

(1) 

where the authors model the cost of accessibility by assuming that there is some 𝑐𝑖 ∈ ℕ associated with the 

allocation of each unit of resource to location 𝑖. Hence, the total accessibility cost can be written as ∑ ∑ 𝑐𝑖
𝑇
𝑡=1

𝑁
𝑖=1 𝑎𝑡

𝑖 . 

Furthermore, Fan et al. (2022) have defined Γ(𝑆𝑡
𝑖) = 𝑒𝑎(𝑒𝑏𝐿 − 1)(𝑒𝑏𝐿)𝑆𝑡

𝑖
 for 𝑆𝑡

𝑖 ≥ 0 and Γ(𝑆𝑡
𝑖) = 0 otherwise, 

where 𝑎 and 𝑏 are the deprivation parameters, and L is the length of a single time period. Intuitively, the costs of 

deprivation and costs of unfairness counteract one another, as the former penalize under-delivering while the latter 

penalize over-delivering resources to locations. Finally, the 𝜉𝑖 are scalar weighting factors. In the following, we 

will define our extension to this problem definition.  
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3. Methodology 

3.1. Optimization Problem Formulation 

 We formulate our resource allocation problem via an optimization model as follows: 

𝑚𝑖𝑛 

 

 ∑∑𝑐𝑖𝟙{𝑎𝑡
𝑖>0}

𝑇

𝑡=1

𝑁

𝑖=1

+ Γ(𝑆𝑡
𝑖) 

(2a) 

𝑠. 𝑡. 𝑆𝑡 = 𝑆𝑡−1 + 𝑎𝑡 − 𝐷 (2b) 

 

𝐶𝑡 = 𝐶𝑡−1 −∑𝑎𝑡−1
𝑖

𝑁

𝑖=1

+ 𝐼𝑐  
(2c) 

 𝑎𝑡 ≤ 𝐹 (2d) 

 
∑𝑎𝑡

𝑖

𝑁

𝑖=1

≤ 𝐶𝑡 
(2e) 

 −𝑀𝑆 ≤ 𝑆𝑡
𝑖 ≤ 𝑀𝑆 (2f) 

 0 ≤ 𝐶𝑡 ≤ 𝐶 (2g) 

 

for t = 1,2,...,T. Similarly to Fan et al. (2022), we aim to minimize transportation costs. However, we assume that 

there is no additional cost associated with transporting more units of resource to 𝑖. Intuitively, this can be 

interpreted as saying that once we decide to drive a truck to 𝑖 for transporting one unit of resources, adding another 

unit of resources to this delivery brings no additional cost. Hence, we can rewrite the allocation cost as in the first 

part of Equation 2a, where 𝟙
𝑎𝑡
𝑖>0 simply is an indicator function that is equal to 1 if 𝑎𝑡

𝑖 > 0 and else is equal to 0. 

Furthermore, we absorb costs of deprivation and unfairness into one term, namely into the second part of Equation 

2a. Here, we redefine Γ such it holds that Γ(𝑆𝑡
𝑖) = 0 for 𝑆𝑡

𝑖 ≥ 0, whereas else we require that Γ(𝑆𝑡
𝑖) =

𝑒𝑎(𝑒𝑑 − 1)𝑒−𝑑𝑆𝑡
𝑖
, with 𝑑 = 𝑏𝐿 and 𝑎 as in the previously defined case.  

 Note, that we have changed the semantics of the state encoding from the original meaning demand of 𝑖 at 𝑡 in 

(Fan et al., 2022) to the new meaning of supply at location 𝑖 at time 𝑡. Thus, the state updates are now described 

by Equation 2b. Additionally, we introduce a constant 𝐼𝑐 ∈  ℕ that models an incoming stream of resources to the 

logistics hub that arrives at each 𝑡. We assume that at each time step, we can allocate the sum of the remaining 

capacity from the last time step and the aforementioned fresh resource supply. Thus, we propose to reformulate 

this aspect as Equation 2c. Note that, in Equation 2g, it holds that 0 ≤ 𝐶𝑡 ≤ 𝐶. We restrict the action space by 

requiring Equation 2d, where 𝐹 ∈ ℕN is a constant vector representing the limitation of supplies that can be sent 

to each location. Moreover, we introduce action masking for the agent via Equation 2e. Lastly, we added the 

constraint in Equation 2f in order to limit the possible configurations of the status 𝑆𝑡 available to a maximum 

value 𝑀𝑆 ∈ ℕ
𝑁. In this way, our method could lend itself to scenarios of highly limited amounts of perishable 

resources, as we penalize both the under- and over-supply of locations as well as consider the arrival of fresh 

resources to the logistics hub at each time step. In the next subsection, we present the MDP formulation considered 

for the experiment developed. 

3.1. MDP Formulation 

In order to solve our problem with RL, we have to define three fundamental building blocks of the algorithm: 

(i) the state space, (ii) the action space and (iii) the reward function. Firstly, we define the states of our MDP as 

the vector of the status and the remaining capacity at time 𝑡 as 𝑠𝑡 ≔ (𝑆𝑡 , 𝐶𝑡). Moreover, it can also be expressed 

with all the multiple components referring to each individual location 𝑖 as 𝑠𝑡 = (𝑆𝑡
0, … , 𝑆𝑡

𝑁, 𝐶𝑡). This allows us to 

summarize all information necessary to take the correct action.   

It is important to remark that the dimension of the state space is exponentially growing with respect to 𝑁. In 

particular, we have that |𝒮| = (𝐶 + 1)(2𝑀𝑆 + 1)
𝑁. The same problem poses itself for the action space in the case 

that we model the action performed at time 𝑡 as 𝑎𝑡 = (𝑎𝑡
1, 𝑎𝑡

2, … , 𝑎𝑡
𝑁). Combined with the constraint in Equation 
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2d, we are able to restrict the action space to |𝒜| = ∏ (𝐹𝑖 + 1)
𝑁
𝑖=1 . However, the set of admissible is much smaller. 

In fact, we have the dynamic updating of the upper capacity of resources that we can supply, represented in 

Equation 2e. Nonetheless, we consider a static action space in order to keep the problem simple and we solve this 

issue using action masking (Huang and Ontañón, 2020). This strategy is a well-known methodology in 

Reinforcement Learning, applied to complex games where multiple rule sets make possible actions feasible 

(Vinyals et al., 2017). Intuitively, action masking removes all actions from the action space of the agent that are 

invalid with respect to some constraints. In our case, we are taking out the possible actions that sum up to a higher 

value than the actual capacity, hence satisfying Equation 2e. Moreover, it is also possible to consider the action 

masking in order to train just a single RL agent for solving the problem for large size scenarios. In fact, by fixing 

the values relative to the areas not considered in smaller situations to 0, we can still consider the aforementioned 

model, masking the invalid actions that would involve the supply of not present areas. In this way, the training 

time could be extremely decreased. 

Finally, we define the reward function our agent aims to maximize. In our case, the selection is trivial since 

the objective function can already model the most of the environment. The only change is in the sign associated 

with Equation 2a. In this way, we obtain that the reward as 𝑟𝑡+1 = −(∑ 𝑐𝑖𝟙𝑎𝑡
𝑖>0

𝑁
𝑖=1 + Γ(𝑆𝑡+1

𝑖 )).  We have 

now defined all technical aspects fundamental to understanding the framework considered. In the following 

section, we will discuss the results of our simulation. 

4. Results and Discussion 

 In this section, we assess the performance of our Q-learning approach by comparing it to two heuristic 

benchmarks, i.e., a one-step and a two-step greedy algorithm. The experiments were conducted on a server with 

256 (2 x 64 +Hyperthreading) cores, 2x AMD EPYC 7763 CPU and 1007Gb RAM.  

 First, we need to declare the instances that have been considered for the test phase. In particular, we focus our 

attention on three possible values for the number of areas to supply, 𝑁 =  {3,4,5}, and four possible capacity 

limits for each of those values. In detail, we consider for 𝑁 =  3 the values 𝐶 = 4,5,6,7, for 𝑁 =  4, 𝐶 =
5,6,7,8 and lastly for 𝑁 =  5 only 𝐶 =  6. The maximum time step was always fixed at 𝑇 =  6, as well as for 

the increase of the capacity 𝐼𝐶 = 3, and the limits of the status of each location 𝑖, 𝑀𝑆 = 3. The initialization of the 

states is performed considering a uniform distribution between the bounds of both the status and the capacity. 

Depending on the dimension of the problem, we constructed similar constant vectors for the demands and the 

capacity of the supplies. For the former, we created a vector that is equal to 2 in the even positions and 1 in the 

odd ones, i.e., 𝐷 = (1,2,1, … )𝑇. Using the same idea, we constructed 𝐹 = (2,3,2, … )𝑇, where we used 2 for the 

odd indexes and 3 for the even. Lastly, we have to declare the parameters associated with the reward function. 

Principally, the cost vector is generated starting with a fixed amount and, then, constantly adding an increment 

value for each new location. Therefore, the singular costs follow the rule 𝑐𝑖 = 200 + 50𝑖. Finally, for the 

deprivation/unfairness function, we used 𝑎 =  3, and 𝑑 =  1.5.  

 Under these conditions, we compared the Q-learning method with the one-step and two-step greedy algorithms 

(Efroni, Y. et al., 2018). These methodologies are simple heuristics based on the idea of taking the action that 

maximizes the reward obtained in one or two steps, respectively. Therefore, they have to first evaluate all the 

possible combinations of actions in order to find the correct estimate. However, this approach is extremely 

expensive since it must iterate the same analysis at multiple time steps. Thus, it is not optimal in terms of time 

consumption to search for the exact solution. For Q-learning instead, we can directly fix an amount of iterations 

that we want to consider and train until that point. In this way we can limit the necessary time needed at cost of 

not finding the best policy. For our experiments, we trained the Q-learning algorithms using a fixed set of 

hyperparameters: learning rate 𝛼 =  0.01, discounting factor 𝛾 =  1, starting exploration value 𝜖0  =  1, 

minimum exploration value 𝜖𝑚  =  0.01, subtractive decreasing exploration factor Δ𝜖 =
1

L
, where 𝐿 represents 

the number of iterations used for the training. The latter parameter is chosen accordingly to the size of the problem: 

for 𝑁 =  3 we used 𝐿 =  106, for 𝑁 =  4 we considered 𝐿 =  5 × 106, and lastly, for 𝑁 =  5, 𝐿 =  107. 

 These methodologies are tested over 100 seeded episodes. The results and the time needed for the training are 

shown in Table 1. Here, the gap is calculated taking into account the best-performing algorithm, i.e., the two-step 

greedy, and averaging over all the episodes. From these results, we can notice how the Q-learning algorithm is 
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able to outperform both the greedy approaches for the small set environments, i.e., N = 3 and C = 4 and 5. However, 

it starts to get worse when the state and action spaces are larger. In fact, in those cases, it has to visit a higher 

number of possible states, thus, it is more probable to not find the correct policy to perform. Moreover, the training 

time of the Q-learning methodology strictly depends on the number of episodes considered. Nonetheless, the 

longer the training the best are the results achieved. Particularly remarkable are also the performances of the one-

step greedy strategy. Indeed, it is the methodology that performs in the best way in terms of quality/time ratio. 

Obviously, even though there is always a gap with the approach that looks one step further, the times are still 

increasing in a much slower ratio. 

Params. Two-Step Greedy One-Step Greedy Q-Learning 

N C T Gap Time (s) Gap Time (s) Gap Time (s) 

3 4 6 0.0% 15.90 8.50% 0.46 -5.00% 548.13 

3 5 6 0.0% 37.28 8.03% 0.79 -0.17% 581.31 

3 6 6 0.0% 69.34 11.17% 1.20 3.96% 575.82 

3 7 6 0.0% 107.90 27.12% 1.65 15.05% 606.91 

4 5 6 0.0% 1116.22 5.91% 11.48 10.97% 3142.67 

4 6 6 0.0% 2345.01 4.51% 18.97 12.37% 3307.43 

4 7 6 0.0% 4327.89 4.81% 29.31 16.48% 3432.32 

4 8 6 0.0% 8974.58 2.66% 44.33 28.52% 3583.66 

5 6 6 0.0% 62826.83 7.38% 276.27 33.40% 7169.24 

Table 1. Results obtained on 100 episodes. 

This is principally due to the explosion of all the possible combinations of actions that can be tested, as can be 

clearly visible by looking at the training times of the two-step greedy. This quick increase in the dimension of the 

environment is a major computational problem. Furthermore, we also tested a DQN approach to the problem 

knowing the high performance capabilities of deep reinforcement learning methodologies. However, we were able 

to set up the experiment only for the smallest value of N = 3 since the memory of the GPU (NVIDA A40 with 

138204MiB VRAM) was not enough to store all the data generated. Moreover, the results obtained after 4 hours 

of training led only to bad results (a gap of 600% compared to the two-step greedy). Therefore, we avoided further 

exploring this solution. 

5. Conclusion 

 In this paper, we extended an emergency supply allocation problem by including a dynamic capacity constraint 

to the resources and compared a Reinforcement Learning algorithm with two greedy heuristics in solving the 

aforementioned optimization task. From the simulation generated, we noticed how Q-learning is able to 

outperform both the greedy approaches for small instances. Therefore, in those scenarios, it is advisable to apply 

a Reinforcement Learning methodology. However, we need to train it for a longer time compared to the other 

heuristics considered in this paper. For larger instances, the best solutions, in terms of minimizing the objective 

function, is obviously the two-step greedy. Nonetheless, the computation time is remarkably high. Therefore, if 

we want to obtain satisfying results in a decent time (order of minutes), the choice is the one-step greedy.  

 Fundamental for this experimentation is the action masking strategy, that allowed us to consider a stationary 

action set. Moreover, a possible direction for future study is the analysis of the results obtained in smaller instances 

by the masked version of the larger Q-learning agent. Furthermore, it would be interesting to test the 
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Reinforcement Learning algorithms in contexts where the updating variables are stochastics. In those situations, 

they could provide interesting results if compared to the classical approaches. 
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